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CALORIMETRY: ITS CONTRIBUTIONS TO MOLECULAR THERMODYNAMICS OF FLUIDS* 
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ABSTRACT 

This article reviews recent contributions of fluid phase calorimetry to 

the theory of pure fluids and fluid mixtures. Selected examples serve to 

illustrate the use of experimental results for the development of rational 

prediction techniques for thermodynamic quantities, which are of importance 

for the chemical engineer. For instance, the following topics are dealt 

with in some detail: 

- Low density fluids: virial coefficients; 

- Pure liquids: isothermal compressibility, heat capacity at constant volume; 

- Liquid mixtures: data correlation, group contribution methods; 

- Dilute solutions: enthalpy of solution. 

i. INTRODUCTION 

During the last decade, calorimetry in general and calorimetry as applied 

to fluids in particular has experienced impressive advances. Besides novel 

designs of apparatus which significantly improved experimental precision, 

considerable effort has been directed toward increasing the accessible 

pressure and temperature range of methods as well as toward simplifying and 

accelerating data acquisition. Details concerning design and operation of 

calorimeters have been recently reviewed, for instance, in various chapters 

of ref. i, by Becket 2 and by Hemminger and H6hne3, and will not be considered 

here to any extent (additional brief surveys may be found in more general 

reviews on the thermodynamics of fluids, such as refs. 4-7). As concerns the 
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scope of this article, we will focus attention upon a few selected areas to whi 

calorimetry has contributed significantly, and present the relevant physics 

together with representative recent results. The topics considered will include 

studies of theoretical importance as well as more application oriented work, w~ 

the bias resulting from the author's current research interests. For instance, 

will first discuss calorimetric measurements which have been instrumental in th 

elucidation of intermolecular forces, such as measurements of Joule-Thomson 

coefficients and excess enthalpies at low fluid densities. Indirect determinati 

of the key thermophysical quantities isothermal compressibility and heat 

capacity at constant volume of dense fluids will be treated next in some detail 

which topics are in turn followed by an appraisal of problems associated with 

the correlation of various thermodynamic excess quantities of liquid mixtures 

as functions of temperature and composition. Finally, recent results of 

calorimetric measurements on very dilute solutions, both aqueous and 

non-aqueous, will be discussed, the former being of interest in the study of 

hydrophobic interaction. 

2. GAS IMPERFECTIONS 

For more than a century, experimental studies of real-gas behavior at low 

or moderate densities (i.e. PVT measurements) have held a prominent position 

in physical chemistry. They were motivated, and still are, either by the need 

to solve practical problems - such as those encountered in reduction of 

vapor-liquid equilibrium (VLE) data - or by their potential usefulness as 

sources of information on intermolecular forces in both pure gases and 

gaseous mixtures. 

low to moderate molar densities 9 V -I, the At pressure-explicit 

virial equation of state 8 

i s  a p p r o p r i a t e  f o r  t h e  d e s c r i p t i o n  o f  r e a l - g a s  b e h a v i o r  I )  . H e r e ,  V r e p r e s e n t s  

i) 
We exclude strongly associating fluids, such as alkanoic acids. For such 

substances appropriate "chemical" theories have been developed 9'I0 



the molar volume, P is the pressure, T is the temperature, R is the gas constant, 

and in the case of mixtures, the subscript x indicates constant composition 

expressed in mole fractions. The coefficients B2~ B, B3~ C etc. are known as 

the second virial coefficient, the third virial coefficient and so forth, and 

are functions of temperature and composition only. The general manner of the 

variation of B and C with temperature is indicated in Fig. I, the curves 
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FIGURE i. Reduced virial coefficients Bn = Bn/b as function of reduced 

temperature ~ = kT/~ from the Lennard-Jones (6,12) potential, see eq. 21 

and Fig. 2. b 0 = (2/3)~s3N A. They were computed 21 with the pairwise 

additivity assumption. B2 has a maximum at about ~ = 25. 

of which have been calculated for a Lennard-Jones (6,12) pair potential 

depicted in Fig. 2. We note, however, that experimental evidence for the 

temperature behavior of C at low temperatures, that is to say left of the 

maximum, is rather weak. 

Alternatively, the compressibility factor Z may be written as a power 

series in pressure 



) B j ) C' etc of the density- (or volume- where the virial coefficients B 2 m , B 3 ~ 

explicit equation of state eq. 3 are also functions of temperature and eomposit 

only. The coefficients of these two infinite series are closely related 2) , i.e. 

B'= BIRT , 

D' :, (.D -s c -,- .z ( ,<r )"  .fo. 

For theoretical as well as practical reasons, the virial equation in density, 

eq. i, is often preferred 8'12'13 over the pressure series eq. 3. Other virial- 

type series are possible. A rather comprehensive comparative study of the rate 

of convergence of several such series, including the pressure-explicite series 

eq. I and the density-explicit series eq. 3, is given in ref. 14, together wit~ 

the appropriate conversion formulae in terms of the B defined by eq. 2. 
n 

For a mixture of n components, each with mole fraction x., statistical 
1 

mechanics provides the following exact mixing rules for the virial coefficient~ 

B(T,x), C(T,X) etc. 

2) 

; i 

In practice, evaluation of virial coefficients from experimental PVT data iE 

limited to the determination of B and C, and occasionally D. As a consequent 

eqs. 5-7 are only approximations for converting me/t6u2te~ virial coefficient~ 

from the truncated density-series representation to the truncated pressure- 

series representation and vice versa. For an illustration of this point, se~ 

for example Scott and Dunlap's work on n-butane 11. 
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On the rhs of eqs. 8 and 9, coefficients with identical subscripts refer to pure 

substances, whereas mixed subscripts designate composition-independent interaction 

virial coefficients (or cross-coefficients) characterizing the molecular interaction 

between molecules of species i with those of species j (Bij), of species i with 

those of species j and k (C ijk) and so forth. A valuable compilation of virial 

coefficients of pure gases and binary mixtures has recently been prepared by 
15 

Dymond and Smith . 

Residual thermodynamic functions (also called departure functions) 8'12 are 

defined as the differences between the actual value of a thermodynamic property 

X and the value of the same property for the fluid in its perfect-gas state, 

Xpg, both evaluated at the same temperature, pressure and composition 3) : 

(10) 

We designate residual functions by a superscript asterisk. They may be expressed 

in terms of the PVT equation of state and hence, at low or moderate densities, 

in terms of the appropriate virial coefficients and their temperature derivatives. 

For instance, when the pressure-explicit equation of state Z= Z(T, 
P 
) is used, 

we obtain for the residual molar enthalpy, including terms up to O( 
P2' 

for the residual molar entropy 

3) Alternatively, it may sometimes be more convenient to define a residual 

function as the difference between the actual value of X for the real 

substance and the value X w referring to the substance in the perfect-gas 

state at the same temperature, density and composition: 

(111 

j(“(r;p,x) = X(r,p,x) - xP8(T,y) * 

In general X*(T,P,x) + X*(T 
rP 
,x), unless the property Xpg of the perfect 

gas is independent of density at constant temperature, such as U, H, Cv, 

and C p. Note, that instead of Xpg often X0 is used. 



and for the residual molar heat capacities 

C~,/R = - Y  TkgT, ~ 2, ~'¢a~ 

T ~b ~ T aC 

= C v / R - 4 +  ~ + Z  f r 

= _ I T , a~ B [ a, lz JC -if,,~+ -(~-V ~ ,  +C- T~7 

+ ' . . I + & Z  , 

d~C ~ z 

+ 7]  - 

T z ~lZC ] ~. ) 
+ "f ~lT'J~ +"'t" 

The fugacity f is defined by f = P°exp(G*/RT), where the residual molar Gibb 

energy is G* = H* - TS*. Hence for the fugacity coefficient ~ ~ f/p we obtai! 

We repeat that eqs. 10-15 are valid for pure fluids as well as constant 

composition mixtures. 

An alternative set of formulae for volume-explicit equations of state, st 

as the pressure series eq. 3, may easily be derived. Since pressure and 

temperature are the most common experimental parameters, these expressions 

some computational advantage. For convenience, we give the relation for the 

fugacity coefficient, viz. 

P 
e.  ÷ = ~(z - 4) e - 4 a P  

4 D~p3 + . . .  EP_'~ + 7. 8'P + 



To round out this introduction, we briefly summarize the relations of the 

virial coefficients with the intermolecular potential energy function. For a 

spherically symmetric (i.e. angle-independent) pair potential u(r), as depicted 

in Fig. 2, it can be shown 12'16 that the second virial coefficient of a pure 

fluid is given by 

1 
"0 

t 
u(r) 

rm r 

-[, ........... 

FIGURE 2. Schematic representation of the potential energy of interaction 

between two spherically symmetric molecules, u(~), as function of inter- 

molecular separation r (see, for instance, the Lennard-Jones potential 

eq. 21). 
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where N A is Avogadro's constant and k= R/N A. Eq. 17 can be transformed through 

integration by parts into 

- -  " ~ r  (1 

A n o t h e r  e q u i v a l e n t  fo rm i s  17 

where E is the maximum depth of the potential energy well (see Fig. 2), and 

~(r)= u(r) + e. The well-width function is defined by 

= (2( 

where r I and r~ are, respectively, the inner and outer coordinate of the potent 

well at energy ~ . Thus we note that although there exist direct and fairly 

simple relations between u(r) and B, eqs. 19 and 20 indicate a formal limitatio 

on efforts to obtain ~niq~g the pair potential from experimental virial 

coefficients 4) . In general, B(T) determines u(r) only for ~(r) > e, i.e. u(r) > 0 

whilst for ~(r)~ ~, i.e. u(r)~0, data inversion yields information as to the 

well width as function of the well depth. However, rather sophisticated inversi 

techniques have been developed recently 18'19 to circumvent this obstacle. This 
20 

topic has been carefully reviewed by Maitland and collaborators 

The conventional approach to the problem of how to extract information on 

the pair potential is based on the use of model functions with two or more 

adjustable parameters, which are optimized by fitting to experimental data 

obtained over ~5~e temperature ranges. A fairly simple and reasonably realisti 

model function for spherical, non-polar molecules is the popular and widely 

used Lennard-Jones (6,12) pair potential function (see Fig. 2) 

3 kmB(m)/[~,NA-exp(~/kT) ] i s  the L a p l a c e - t r a n s f o r m  o f  A(~/), 4) Note that 

%o 

with s = I/kT. 
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Here, c is that value of r for which u(r)= 0, and E is the depth of the potential 

well at rm= 21'6*c, i.e. at the minimum of u(r). A numerical method for evaluating 

virial coefficients assuming pairwise additivity of the potential function (see 

below) is given in ref. 21. Its results were used for Fig. 1. Details ConCeming 

the use of more complicated model functions as well as limitations of this 

approach may be found in refs. 12, 20, and 22, which also contain sections on 

angle-dependent potential functions. 

For convenience, we give here the numerical values for a few hard-sphere 

virial coefficients 
12 

(u is the hard-sphere diameter): \s= (2/3)*iTa3NAe b 
0' 

Chs/b; = S/8, and Dhs/b: = 0.2869. 

The second virial coefficient of a mixture is given by eq. 8, where Bii is 

due to interactions i-i, and is related to the pair potential via eq. 17. 

Similarly Bij characterizes interactions of type i-j, and is related to the pair 

potential uij(r) between unlike, spherical, non-polar molecules by an expression 

analogous to eq. 17, the only difference being the replacement of u(r) by uij(r). 

Thus the mixture problem is reduced to the calculation of the interaction virial 

coefficients and hence to the calculation of uij in terms of the pure-fluid 

potential functions uii and u... Conversely, 
13 

experimental results on Bij are 

frequently used to obtain information on u.., 
iI 

which in turn may be exploited to 

establish semi-empirical methods for its estimation from the known potential 

functions of the pure fluids. Such recipes are generally known as combining rules, 

and will be discussed further at the end of this section. 

We conclude this introduction to the theory of virial coefficients with a 

few remarks concerning third virial coefficients. Even for pure fluids, reliable 

results on C(T) are not plentiful, and virial cross-coefficients C.. 
l3k 

for 

mixtures are exceedingly scarce. While B(T) contains information on two-body 

molecular interactions, C(T) is potentially useful for the elucidation of 

contributions due to three-body molecular interactions. In order to obtain C(T) 

from statistical mechanics, the three-body potential energy u3 for a trio of 

molecules must be evaluated. Formally, we may write 

where the first three terms on the rhs of eq. 22 represent the so-called 

pairwise-additivity assumption, which in more general terms is expressed as 

(23) 

where uN denotes the n-body potential energy. 
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Au is a correction term representing the non-additivity contributions. 

Eq. 22 then leads to 

C(T) : C"~a(T) + ZIC(T) , 

where cadd(T) is the value obtained 12 assuming ~u = 0 : 

(2 

Here, fij ~ exp L-u(rij)/kT]-l' and rij is the distance between molecules i and 

j. Estimation of the non-additivity contribution ~C(T) may be based, for 
23 

instance, on the work of Sherwood and Prausnitz . 

Several successful predictive methods for evaluating Cij k of mixtures from 

pure component third virial coefficients are based on extended versions of 
13,1 

corresponding-states theory (CST), such as those due to Chueh and Prausnitz 

and of de Santis and Grande 25, respectively. 

We now turn to our "Leitmotiv" £ ~ 0 ~ g  by inquiring as to its eontributi 

toward improved knowledge of virial coefficients. At a first glance, direct 

experimental determination of virial coefficients by conventional precision 

PVT measurements appears to be straightforward. In practice, however, the 

situation is far less satisfactory, and current experimental techniques allow 

only measurement of B and C, and occasionally D. Though PVT methods undoubtedly 

account for the bulk of data on virial coefficients, indirect methods have 

recently attracted considerable interest. The main advantage of many of these 

methods is the possibility of obtaining reliable results even under conditions 

where adsorption would be a serious problem with conventional methods, that is 

to say at low reduced temperatures. 

In principle, experimental determination of any property whose value depends 

on gas imperfection, and hence on the equation of state, may be used to determi 

virial coefficients. Perhaps the most important technique to date is the flow- 

calorimetric measurement of the isothermal Joule-Thomson coefficient 26-31 

(~H/~P)T, which quantity is related to the (isenthalpic) Joule-Thomson 

coefficient ~ ~T/~P)H according to 

Consider an adiabatic flow calorimeter fitted with a throttle, a heater 

and appropriate thermometers and manometers as shown schematically in Fig. 3. 
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T\ heater T2 

s po;ous plug 

(throttle) 

FIGURE 3. Adiabatic flow calorimeter (schematic) equipped with throttle, 

electric heater, thermometers (Ti, T2) and manometers (Pl, P,). 

When no power W is supplied by the heater to the fluid flowing with a molar flow 

rate f, this throttling experiment is isenthalpic and 

(27) 

On the other hand, when the power input is adjusted so as to maintain isothermal 

conditions across the pressure gradient (isothermal throttling), we obtain 

Note that with the throttle removed we have a flow calorimeter for measuring 

essentially the heat capacity at constant pressure, 

(28) 

(29) 
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The quantity measured in an actual isothermal throttling experiment may be 

expressed in terms of virial coefficients 

~_~ = ~ ' - T ~ + L  - j r  + 2 C - T ~  +..., 

where P = (PI + P2 )/2 is the mean pressure. Thus, when plotted against P, the 

intercept is the zero pressure isothermal Joule-Thomson coefficient 

while the initial slope yields information on the third virial coefficient, 

see eq. 30. Evidently, eq. 31 may be integrated between a suitable reference 

temperature Tre f and T to yield 

- f  = D . f  ~T . (32 

Precise flow calorimeters for measuring ~ and Cp have recently been designed 
3O 

by Bier and coworkers , who measured these quantities for ethane and propene31, 

and subsequently determined the compressibility factor, entropy, enthalpy etc. 

For instance, the latter quantity may be obtained by integrating 

~H = Cp~T - p C ~ P  , (33a 

and by integrating ~/T 2 over T, differences of Z may be determined: 

r 

r~sf 
Today, flow calorimetry is the commonly used method for measuring the heat 

32,33 
capacity at constant pressure of gases and vapors , and isothermal 

measurements of Cp as a function of pressure are usually performed to obtain thl 

o in the perfect-gas state, i.e. at zero pressure (see Table I). heat capacity Cp 

We note that 

It-- -Ta-f~ • (34 tgP P-~O 
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TABLE 1. Vapor heat capacity CP/JK-lmol 
-1 

of benzene35 and hexafluorobensene 
36 

as function of temperature and pressure. 

P/kPa 
-1 

of C6H6 at 

333.15 K 368.15 K 403.15 K 413.15 K 527.15 K 

202.65 

101.32 

50.66 

25.33 

12.67 

94.23 

93.76 

106.39 

105.13 

104.59 

104.26 

117.44 

115.85 

115.01 

114.69 

114.47 

134.45 145.48 

133.79 145.99 

133.30 145.82 

133.09 145.70 

-1 
93.32 103.98 114.29 132.94 145.39 

c,/JK-lmol 
-1 

of C6F6 at 

335.15 K 368.15 K 403.15 K 473.15 K 527.15 K 

202.66 

101.32 

50.66 

25.33 

12.67 

168.48 

167.35 

190.53 201.81 210.55 

180.24 186.70 200.21 209.61 

177.47 185.01 199.38 209.14 

176.29 184.33 199.23 209.08 

c;/JK-lmol -1 166.27 174.95 183.40 198.76 208.78 

These results may then be used to obtain the residual heat capacities 

c*=c -CO 
P P 

p, and C* = CV - 
V 

C; + R, which quantities are of central importance 

in fluid phase thermodynamics. As an example of estimation techniques for C;, 

which are based on group contribution methods , we refer to the work of Benson 

and collaborators34. 

Calorimetric measurements of the molar enthalpy of vaporization A? are also 

a useful source of information on second virial coefficients. Starting with the 

rigorous Clapeyron equation 

(35) 
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where d~V = __V~,s - ql,s denotes the molar volume change on vaporization, we 

obtain, after rearrangement and assuming negligible influence of virial 

coefficients other than B, 

Z s= 4 + 8jo~,# 

[3 

Here, Z s = Ps/(~g,sRT)is__ the compressibility factor of the vapor phase at 

saturation conditions. Since both vapor pressure P and orthobaric liquid 
s 

molar density _ ~l,s = I/Vl,s are usually known with great precision as function 

of temperature, eq. 36 permits evaluation of B. Concurrent determinations of C ° 
P 

and B as functions of temperature via calorimetric measurements of vapor heat 

capacity and enthalpy of vaporization have been used extensively by Hossenlopp 

and Scott at the Bartlesville Research Center, Oklahoma, now part of the U.S. 

Department of Energy. For many substances such a treatment provides the only 

information on second virial coefficients. Representative articles, for 

instance on the IUPAC - recommended reference material benzene, are given in 

refs. 35 and 36. 

The speed of sound at zero frequency w 0 is related to the equation of state 

and hence to the virial coefficients by 

(3 

where ~ = Cp/~ = ST/B S . S T = -V-I(gv/~P)T and 6 S = -V-I(~v/~P)s are, 

respectively, the isothermal and the isentropic compressibility, and M is the 

molar mass. Correct to the second virial coefficient we thus obtain 

o is the speed of sound in the perfect-gas state where w 0 

(~;)~= K'RT/M , c3 
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and 

A~ = Z8 + Z(d-~)T~-?d~ ÷ C¢-gzK. r ~ at----% a~B (41) 

Thus, measurement of the sound speed 37 as function of density or pressure will 

yield information on B together with its first and second temperature derivatives 

Though ~°(or C;) may as well be obtained through extrapolation of measured 
2 

%40 to zero density, another approach is to combine precise calorimetric results 

o for the heat capacity in the perfect-gas state, C V = C;-R, with isothermal 

measurements of ~v 0 as function of density: this method of determining B is both 

rapid and unaffected by adsorption, and may be applied in a large temperature 
38 

range 

Most of the methods so far discussed for pure substances may equally well be 

used for constant-composition mixtures and will then yield B(T,x) etc. Consider, 

for example, a binary gas mixture containing components I and 2 with mole 

fractions x I and x2, respectively. According to eq. 8 5) 

s(r, , ,~ -- , , t~,,  • z, ,~, ,~6,~ ,. ,,~ s =  , 

and once B(T,x) is known through some experiment, B12 may be calculated, though 

with a larger uncertainty than that associated with the pure substance values. 

Calorimetric determination of the molar enthalpy of mixing H E of two gases is 

yet another source of information on the interaction virial coefficients. At 

low pressures this quantity is closely related to the excess second virial 

coefficient 

8 = B s , -  * 

(42) 

(43) 

Specifically, 

(44) 

5) 
For the cross-coefficients certain symmetry relations apply, e.g. 

Bi~/-~ B~ , 
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where the second-order term is a fairly involved function of second and third 

pure-component and interaction virial coefficients 6) " , and of their temperature 

plotting HE/(xlX2P) against P, the intercept yields derivatives. Thus, when 

~-Td~dT, or equivalently the excess zero-pressure isothermal Joule-Thomson 

coefficient [~o i 22)~ 12 - ~( ~ + ~o ~ here the cross-term Joule-Thomson coefficien 

~12 I~) , and ~ and ~22 are the pure-component coefficient 

(see eq. 31) , which may be obtained either by direct measurements or from the 

temperature dependence of the second virial coefficients of the pure substances 

In contrast to PVT experiments, there are ~0 adsorption errors. Since H E 

for most gas mixtures is positive, a flow calorimeter may be operated 

isothermally by balancing the cooling with electrical heating. As a consequence 

heat leaks can be made very small. Pioneering design of equipment as well as 
• 39,40 

a large number of investigated mixtures are due to Wormald and coworKers 

As already indicated;virial cross-coefficients measured in one way or 

another serve a dual purpose. Clearly, they are of importance in practical 

problems associated with real gas behavior, including data reduction of 

low- or medium-pressure VLE measurementsl3; these topics will not be pursued 

further. On the other hand, with the restrictions discussed above, cross 

coefficients permit the testing and development of so-called combining rules, 

that is to say of methods designed to characterize unlike-pair interactions 

in terms of like interactions. The simplest prescription for two-parameter pair 

potentials is the classical Lorentz-Berthelot rule, 

6) 

7) 

In analogy to eq. 43, it is convenient to define two excess third virial 

coefficients, viz. ~i12 and ~122' according to 

1 . 

Note that the zero-pressure isothermal Joule-Thomson coefficient of a 

binary mixture is given by 

• ~. o o 

~'I- " 



The first relation, eq. 45a, is exact for hard spheres, 

to follow from a simplified treatment of the dispersion 

17 

and the second is seen 

energy. For real 

substances neither relation is valid and results obtained via eq. 45 are 

generally rather unsatisfactory. Thus, it is common practice to introduce 

parameters to describe deviations from this rule, viz. 

(464 

(46b) 

Several of the more popular,semi-theoretical expressions for are given in 

Table 2. A successful new combining rule for 
j 

and 7 which is applicable 

to spherically symmetric two-parameter pair potentials, has recently been 

TABLE 2. Combination rules for the interaction 

where 
3 

is of the form ) = [2dG/(xll + 

(that is to say with the assumption 

energy parameter E = 
5 

l/2 

~22)ln[2~~&I + 
(c11c22) ’ 
cJ22P 

X Reference 

n=l (N/a)"2 : N is the (effective) J.C. Slater and J.G. Kirkwood, 

electron number, and CL is the Phys. Rev., 1931, 37, 682. 

mean polarizability 

Q/e : 0 is the diamagnetic J.G. Kirkwood, Phys. Z., 1932, 

susceptibility 33, 57. A. Miiller, Proc. Roy. Sot. 

(London), Ser.A, 1936, 154, 624. 

I : first ionization potential G.H. Hudson and J.C. McCoubrey, 

Trans. Faraday Sot., 1960, 56, 761. 

cc6 2 /a F. Kohler, Monatsh. Chem., 1957, 

88, 857. 

n=2 (N/a)1'2 D.R. Pesuit, J. Chem. Phys., 1977, 

67, 5341; Ind. Eng. Chem. Fundam., 

1978, 17, 235. 
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suggested by Kohler, F£scher and Wilhelm 41. It is based on the senior author's 

earlier work 42 and includes as a novel aspect the constraint of additivity of t 

temp~£-dependent effec;bive hard-sphere diameters (instead of ~) 

: I {  4 - 

with ~(r)--u(r) + c. Even for rather complicated mixtures, such astCH 4 + CF4] ) 

satisfactory results are obtained for BI2. 

On a somewhat less fundamental level, experimental data on BI2 as a function 

of temperature, may be used to establish as well as improve correlations based 

on extended CST. Consider, for instance, Tsonopoulos' method 43 for calculating 

the reduced second virial cross-coefficient at a reduced temperature 

T r = T/Tc,12: 

where B(0)(Tr ) and B(1)(Tr ) are functions of inverse powers of T r. The 

characteristic parameters Tc,12 and Pc,12 are related to the pure-component 

critical quantities T i' Pc and V through the mixing rules 
c, ,i c,i 

(4! 

(5~ 

(5: 

Here, ~ is the acentric factor of pure i, and k12 is a binary interaction 

parameter (usually much smaller than unity) ; l-k~is somewhat similar to I 

of eq. 46b. For any given type of mixtures, say (N 2 + a hydrocarbon), 

k12 may be correlated with appropriate quantities characterizing these 

mixtures, for instance with the number of C-atoms or with the critical 

volume of the hydrocarbon. Thus, provided a reasonable number of k12 

values has been determined experimentally, BI2 of a specific mixture of the 

same type, for which no experimental PVT data are available, may be 

estimated with some confidence by this procedure. 
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3. PURE LIQUIDS AND LIQUID MIXTURES 

This section is devoted essentially to two topics: 

(a) Determination of the isothermal compressibility ST and the molar heat 

capacity at constant volume CV, and a few selected areas of 

application. 

(b) The use of data on molar excess enthalpies HE and molar excess heat 

capacities C", in the development of data correlations, in particular 

in the development of group contribution theories. 

An appraisal of contributions of calorimetry toward an improved under- 

standing of dilute solutions is deferred to Section 4. 

3.1. ISOTHERMAL COMPRESSIBILITY AND ISKHORIC HEAT CAPACITY 

Isothermal compressibility RT and isochoric heat capacity CV are key 

thermophysical quantities, and accurate data are needed in many areas of physics, 

chemistry and the engineering sciences. However, reliable data for pure liquids 

are not plentiful, and a fortiori this is the case for mixtures. Traditionally, 

isothermal compressibilities have been obtained by direct methods, that is to 

say by conventional PVT measurements at relatively high pressures. A careful 

discussion of some pitfalls associated with such an approach has been presented 

by Hayward 
44 . With the availability of relatively fast high-precision 

calorimetric equipment 
45 

in conjunction with modern techniques for measuring 

volumetric properties of liquids 
46 , the indirect method for determining RT 

via measurement of the heat capacity at constant pressure C 

%V/aTl,. 

p, the speed of 

sound w o, the thermal expansivity ap = V and the molar volume V 

has attracted renewed interest. The relevant relations are 

(53) 

Indeed, it has been shown that results obtained with eqs. 52 and 53 are reliable 

to within a few tenth of a percent 
47,48 , and are thus comparable with the very 

best data measured directly (see Table 3). Cv is obtained from Cp according to 

(54) 

The corresponding imprecision is of similar magnitude as for BT, arising 

mainly from the experimental uncertainty associated with tip. 
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TABLE 3. Isothermal compressibility ~T at 298.15 K of tetrachloromethane, ben2 

and cyclohexane: comparison with selected literature data a (values obtained by 

indirect method are italicized) 

Asenbaum & Wilhelm 48 Literature 

CCl 4 1075.5 

C6H 6 970.5 

C6H12 1129.9 

I066 b, I059 c, i077 d, i089 e, 

1077.9 f ,  I014.6 g 

967 h, 968 d, 944 e, 971 i, 966 j, 

973.2 k, 969.7 f ,  969.2 g 

iii0 c, 1140 d, i130 i, i120 j 

7127.7 l ,  1130,2 f ,  1126.6 g 

aNo attempt was made to distinguish between results obtained for saturation an 

atmospheric pressure. 

bR.E. Gibson and O.H. Loeffler, J.Am.Chem.S0c., 1941, 63, 898. CM. Diaz Pe~a 

M.L.McGlashan, Trans.Faraday Soc., 1961, 57, 1511. dG.A. Holder and E. Whaile 

Trans.Faraday Soc., 1962, 58, 2095. eH.W. Schamp, J.R. Hastings, and S. Weiss 

Phys.Fluids, 1965, 8, 8. fo. Kiyohara, C.J. Halpin and G.C. Benson, J.Chem. 

Thermodyn., 1978! i0, 721. gRef. 47. hR.E. Gibson and J.F. Kincaid, J.Am.Chs 

Soc., 1938, 60, 511. iM.B. Ewing, K.N. Marsh and R.H. Stokes, J.Chem.Thermody 

1972, 4, 637. JE. Aicart, G. Tardajos, and M. Diaz Pe~a, J.Chem.Thermodyn., 

12, 1085. kE. Rajagopal and S.V. Subrahmanyam, J.Chem.Thermodyn., 1974, 6, 87 

~E. Rajagopal and S.V. Subrahmanyam, J.Chem.Thermodyn., 1980, 12, 797. 

Correlations of data concerning the volumetric behavior of liquids under 

hydrostatic compression are based on essentially semi-empirical equations 

of state. Up to several tens of megapascals, one of the simplest and most 

versatile equations is the so-called modified Tait equation 

v(r.P)lv .fCr, ,fl - + , 

where BT,re f and Vre f denote the isothermal compressibility and the molar 

volume, respectively, at an arbitrary reference pressure Pref" For 

convenience this reference pressure is often taken either as 100 kPa or 

as Ps' the orthobaric pressure, n is a pressure-independent parameter. 
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For many organic liquids experimental values of n cluster around I0, with no or 
49,50 

very small temperature dependence . From eq. 55 it follows that 

~/<~r( T, ~) = "~//~T,,,~< ~ ~,~> + ~' (P - ~ f )  , ~ '  

which relation is identical with the linear tangent-modulus equation 8) . 

For liquids composed of polyatomic molecules, the residual isochoric heat 

capacity C~ may serve as the starting point for a semi-quantitative discussion 

of density-dependent external hindered rotation (or libration) of molecules. 

This approach is based on the reasonable assumption, that for more or less 

rigid molecules without internal rotations 9) the Hamiltonian can be separated 

into contributions corresponding to the various degrees of freedom of the 

molecules 47'48'50-57. Specifically, the canonical partition function for the 

58 
liquid may formally be written as 

~. = . ( z , , i S ( z  e)N Z),,ot Qo > ~s7) 

hz ~/g 
.A. = ( z ; j ~ r /  • csa) 

is called the thermal de Broglie wavelength associated with a molecule of 

mass m at temperature T, h is Planck's constant, Zvi b and Zel are the molecular 

vibrational and electronic partition functions, and Zhrot denotes the density- 

dependent partition function for hindered rotation of the molecules as a whole. 

The configuration integral 

(59) 

8) 

9} 

Several useful expressions may easily be derived from eqs. 52 and 53, such as 

~J~.,~ = <v/v.,~) ~ 

Pure liquids and liquid mixtures where constituent molecules show internal 

rotation (e.g. 1,2-dichloroethane) have been discussed in refs. 50-53. 



22 

incorporates only the angl£-~depznde~t part u 0 of the total potential energy, 

and d~ i ~ dxidYidz i. This approach -is similar to that of Beret and Prausnitz 59 

The link with thermodynamics is established through 

F = - k T e , , E  > (6 

where F is the molar Helmboltz free energy, and C V = -T(92F/aT2) V. In most 

cases of interest the residual quantity C* = 0, and often C* ~ 0 (see for 
el vib 

instance ref. 48), whence the residual molar isochoric heat capacity I0) of a 

saturated liquid at a reduced temperature T may be expressed as 
r 

* ( .L )  : C~,.ot ( D )  + cv .A . (%)  (~ £v 

The residual heat capacity of argon C*,Ar(Tr)v represents the contribution due 

Q0' which approximation is based on corresponding states theory 48'56. to 

C~rot(T r) represents the excess over the perfect gas rotational heat capacity. 

This excess is due to hindered rotation (or libration) of the molecules as a 

whole in the liquid phase, i.e. C*rot(Tr)n = Clrot(Tr)n - Cpg'rot (Tr)" Fig. 4 shows 

the residual rotational heat capacity C* for several liquids as a function 
hrot 

10) 
The canonical partition function for a polyatomic perfect gas (free rotati¢ 

is 

4iV\ N ~ ~ 

where classically, for linear molecules 

and for non-linear molecules 

~ere, I denotes the moment of inertia (Ix, ly, I z are principal moments of 

inertia), and ~ is the symmetry number of the molecule. Classically, 

C pg = R for linear molecules, and C pg = 3R/2 for non-linear molecules. 
rot rot 
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c-.C6HI2 

\ 
CCt~ 
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o.so o.ss 0.60 e6s 
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FIGURE 4. Residual rotational heat capacity C~rot/R as function of 
48 48 

reduced temperature T/T of cyclohexane , benzene , tetrachloromethane 48 
56 c 

and tin tetrachloride along the saturation curve. 

of reduced temperature (orthobaric conditions). These results may now be 

discussed in terms of any suitable model for hindered external molecular 

rotation, for instance by adopting Pitzer's non-classical treatment 60 of 

hindered internal rotation 48'56. As specific examples, we quote rotational 

barrier heights so determined at 298.15 K for liquid carbon tetrachloride, 

Uo= 4 kJ/mol, and for liquid tin tetrachloride, U0= 5.5 kJ/mol. These values 

are in reasonable agreement with results obtained by other methods, and 

indicate appreciable interlocking of these tetrahedral molecules (see also 

ref. 61). Extension of this kind of discussion to mixtures is possible. 

E 
3.2. EXCESS ENTHALPY H E AND EXCESS HEAT CAPACITY Cp 

The theory of liquid mixtures of non-electrolytes has greatly profited 

from ~y~t82w~t~c investigations of (molar) excess quantities G E, H E , S E, V E 
E 

and Cp as functions of both temperature and composition62'63; the influence 

of pressure has been investigated to a much smaller extent. An excess 
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quantity is defined by 

X X - [s--, ) 

that is to say it is defined as the difference between the actual molar prope 

value X real and the value calculated for an ideal mixture X ideal at the same 

temperature, pressure and composition. For example, the molar excess heat 

capacity at constant pressure of a binary mixture is given by 

= -- x4C;> 4 ×~C;> ~ Cp Cp ( ÷ ) ) 

where Cp, Cp, 1 °  and Cp,2o a re  the  molar  h e a t  c a p a c i t i e s  of  the  mix tu re ,  and of  

the pure components 1 and 2, respectively. For an overview of progress 

concerning experimental techniques for measuring excess quantities, we refer 

the pertinent review articles and monographs cited in the Introduction. 

The most satisfactory strategy for a comprehensive thermodynamic 

investigation of liquid mixtures is exemplified by the work of Ziegler and 
64 

coworkers . These authors determined, by adiabatic calorimetry, the molar he 

E of selected mixtures as a functic capacities Cp and excess heat capacities Cp 

of composition and temperature over ranges exceeding i00 K (in general, the 

experimental data were fitted to polynomials in temperature). In conjunction 

with experimental results for H E and G E = H E - TS E at suitably selected 

temperatures (at or near 298.15 K), these heat capacity data were then used 

to calculate H E , S E and G E in the temperature range of the calorimetric 

measurements by integrating 

and 

For instance, this method has been applied to various binary mixtures of 

type [alcohol + hydrocarbon) . Subsequently, the whole set of thermodynamic 

excess functions was compared with predictions of various chemical 

association models, which is indeed a severe test of any theory. 

Measurements of this type play an important role in the development of 

generalized classification schemes of liquid non-electrolyte mixtures. The 

most recent activity in this field is due to Kohler and Gaube 65, and was 
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stimulated by Bittrich's work 
66 

of the mid-sixties. The former authors plot GE 

against BE for binary mixtures at x= 0.5, and indicate the changes with 

increasing temperature by arrows, thereby distinguishing qualitatively various 

mixture types. 

Outside the critical region, the influence of pressure on excess quantities 

is rather small, though modern instrumentation allows, for instance, the 

measurement of enthalpies of mixing at elevated pressures 67-69 . Since 

(66) 

eq. 66 is frequently used for testing the consistency of such calorimetric 

measurements by means of volumetric data and vice versa. 

Quantitative information on phase equilibria is essential for designing 

separation processes such as distillation, partial condensation, absorption and 

extraction. Phase equilibrium calculations in multicomponent PVT-systems of 

uniform temperature and pressure are conveniently based on the rigorous 

thermodynamic criterion of equality of the fugacities fi(T,P,xl,...,xn) for 

each component i in all phases involved. The link with practice is generally 

established by either one of two equivalent methods. In the first, the 

condition for equilibrium is rewritten in terms of fugacity coefficients 

fi E fi/(xiP) and thus requires an equation of state which accurately describes 

the volumetric properties of all phases. In the second method, the fugacities 

in the liquid phase(s) are expressed in terms of liquid-phase activity 

coefficients yi' fi/(xifp), where fi is an appropriate standard-state 

fugacity. For vapor-liquid equilibria this approach yields 

(67) 

as equilibrium condition , where yi is the mole fraction in the vapor phase 

and xi the mole fraction in the liquid phase. For temperatures below the 

critical temperature, f; is usually taken to be the fugacity of pure liquid i 

at T and P of the mixture. This method is particularly useful for the 

description of VLE at low or moderate pressures. For liquid-liquid equilibria, 

with fO 
1 

being the same in both liquid phases cs and 5, we obtain 
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The activity coefficient is directly related to the molar excess Gibbs 

energy G E through 

¢~ }'; = P,T %~ 

where n = 

) 

~ n i denotes the total amount of substance, and 

L 

G /j l- 

(6 

(7 

Considerable effort was - and still is - invested in the development of 

efficient models for G E of complex liquid mix~. Ideally, they should 

allow evaluation Of ~i at any desired composition and temperature. If 

sufficient experimental data are available for a given mixture, the emphasis i~ 

on int~tpola~on (or on extrapolation over Sm~ ranges of composition or 

temperature). Several well-known essentially empirical relations, such as 

Redlich-Kister, generalized Myers-Scott 70, van Laar etc., when necessary with 

temperature-dependent parameters, may be adopted. Occasionally, spline-fit 

techniques are indicated 71 . However, if no data are known, pr£dicZion is 

preferably based on one or the other of the existing group contribution 

theories. These theories are based on the intuitively appealing assumption 

that "group properties" are essentially invariant, that is to say they are 

supposed to be independent of the type and the number of other groups present 

in the molecule. ~t is clear that this assumption can never be strictly valid, 

but in many cases of interest (and with judiciously defined groups) it is a 

reasonable approximation. The usefulness of group contribution methods lies 

in the fact, that with only a few groups a great variety of molecules of 

potential interest may be constructed. 

The quantitative performance of a given group contribution theory depends 

crucially on the underlying statistical-thermodynamical mixture model. For 

instance, the Guggenheim-Barker-Kehiaian (GBK) theory 72'73 is based on the 

rigid quasi-lattice model and considers interactions in terms of group 

surfaces. The geometrical parameters "relative molecular volume" r i and 

"relative molecular surface" qi of molecule i are calculated II) by adding 

appropriate group increments as determined by Bondi's method 57. In the simplesl 

version of the GBK theory, that is to say in the random-mixing (or zeroth) 

Ii) Here, "relative" means with respect to methane (arbitrary choice). 
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approximation, the molar excess Gibbs energy of a multicomponent mixture is 

given by 

where the combinatorial term is calculated with the simple Flory-Huggins 

equation 

and the interaction term is 

Here, the volume fraction Y; of component i is defined as 

the surfacs fraction of i in the mixture is 

and the molecular surface fraction of surface of type s on molecule i 

is defined by 

The parameter gst is called the molar interchange Gibbs energy referring to 

contact of surfaces of type s and t. For the molar excess enthalpy we obtain 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 



-0~, 

where the molar interchange enthalpy h 
st 

T) 
_ h ~  ~ - T '~ 

"#T ? 

is related to gst by 

(8( 

and so forth. The interchange parameters have to be obtained from syst~t~C 
ZXp~q~6 on mixtures and are subsequently tabulated 12) . As concerns the heat 

capacities of interchange, the majority of the necessary experimental data hav~ 

become available only because of significant improvement of calorimetric 
45,47,52 

equipment during the mia-seventies (see Fig. 5). We note that in gener6 

E _T (~2GE/~T2 ~ prediction of Cp = is a much more delicate matter than prediction 

of H E = [9(GE/T)/~(I/T)]~ ,since with increasing order of derivatives of the 

excess Gibbs energy deficiencies of the underlying model are considerably 

magnified. 

0.2 0,4 O~ x, ~ OJ 

-Q4  

-0,1 
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FIGURE 5. Comparison of the molar excess heat capacity at constant 

E for [tetrachloromethane(x I) + cyclohexane(x2)] at 298.15 K. pressure Cp 

Experimental results: O , ref. 47; • , ref. 45b. 

12) 
An interesting application of the GBK theory (random-mixing approximation) 

to the calculation of solid-liquid equilibria by using interchange 

E is reported parameters obtained from experimental data on VLE, H E and Cp 

in ref. 74. 
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In this connection it is emphasized that conformational (or cooperative) 

effects, associated for instance with mixtures containing an n-alkane as one 

component, are not incorporated in any of the current versions of group 

contribution theories such as GBK. UNIFAC 
75 

, ASCG 
76 

etc.13), but may have 

profound influence on HE and C 
E 
R. Additional areas of current xesearch 

activities include orientational effects due to complex polar groups, molecular 

shape (packing!) and intramolecular proximity effects; when strongly 

associating substances - such as alkanoic acids (see Fig. 6) - are involved, 

chemical association theories are indicated and have been rather successful. 

Representative articles on these topics are given in refs. 52, 53, 83-93, while 

critical discussions of group contribution methods are provided by refs. 72 and 94. 

FIGURE 6. Molar excess enthalpies El* of [1,4-dioxanecx) + CnH2n+lCOOH] 

at 298.15 K. O,n=O; 0rn=l;@,n=2;n,n=3;A,n=5; 

A ,n=7. From ref. 89c, p. 517. 

13) The UNIFAC (UNIQUAC functional-group activity coefficients) method and the 

ASOG (analytical solution of groups) method are both based on the "local 
77 

composition" concept , which has recently been criticized severely 
78-82 

. 
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4. DILUTE SOLUTIONS 

In recent years there has been a resurgence of interest in dilute solutions 

general and in dilute aqueous solutions in particular, the experimental basis ¢ 

which has been an impressive array of newly designed and readily available hig~ 

precision equipment - not the least calorimetric equipment. For excess enthalp~ 

step-wise isothermal dilution calorimeters 95 or flow calorimeters based on the 

designs of either Monk and Wads696 or Picker 97 have been rather successful, whi 

the introduction of the Picker calorimeter for heat capacity measurements (see 

above and ref. 98) has made feasible high-precision determination of partial me 

heat capacities (or alternatively of apparent molar heat capacities at high 

dilutio~ .Since the quantity actually measured with the Picker calorimeter is t 

heat capacity per unit volume, Cp/V, precise volumetric data for the mixtures 

must be available. Most of the measurements of the excess volumes are nowadays 

made with either continuous dilution dilatometers 99'I00 or with digital densi- 

meter 46'47'I01 (for a recent review of experimental techniques and of publishe6 

data see ref. 102). In conjunction with isentropic compressibilities obtained 

from ultrasonic speeds, reliable isothermal compressibilities and isochoric hea 

capacities (see eqs. 52-54) are now becoming available for an increasing numbez 

of dilute aqueous solutions I03'I04. A novel method for direct continuous 

measurement of the thermal expansivity is described in ref. 105. It uses a 

differential flow heat-capacity microcalorimeter (Picker design) to monitor in 

continuous mode the thermal expansion of a sample during a programmed temperatu 

scan. 

The composition of a solution is often expressed not in terms of the mole 

fractions of the solutes but in terms of their molalities m. For a solute i 

(i= 2,3,...,k) dissolved in solvent I, the molality is defined by 

*.~ = ~ / ~ M ~  , (8: 

where n denotes the amount of substance, and M I is the molar mass of the 

solvent. The molality is related to the mole fraction by 

k 

Instead of partial molar quantities X. some authors prefer to use apparent mola 

quantities of the solute. For solute 2 dissolved in solvent I the definition iE 

where X is the corresponding extensive quantity, and X~ denotes here the molar 
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quantity of pure solvent. 

quantity by 

is related to the corresponding partial molar 

(84) 

Discussion of thermodynamic quantities concerning biochemical systems is most 

profitably based on results obtained for relatively simple model substances 

dissolved in liquid water. Such an approach has proved eminently useful in the 

discussion of hydrophobic interaction 
106-110 

and its contribution, for instance, 

to the reversible aggregation of molecules with long non-polar chains as in the 

case of phospholipids and to the conformational stability of proteins. 

The partial molar heat capacity Cp2 of the solute at infinite dilution is 
I 

regarded as one of the most interesting thermodynamic quantities. For many 

substances dissolved in liquid water, values of Cm p 2 have been obtained through 

extrapolation of calorimetrically obtained data over reasonably selected com- 

position ranges (note that CF2 

in water, 
, = c#qJy;~r’ for substances sparingly soluble 

such as benzene and cyclohexane ’ 113 
, oxygen , carbon monoxide114 or 

115 
methane and ethane , high-precision VLE measurements over a sufficiently large 

temperature range are often the only sources of partial molar heat capacities (see 

below and Fig. 7). Cr2 data have been used by various authors to develop 
, 

relatively simple estimation techniques based on concepts from group contribution 

theory 
116-120 . Considering the complexity of the solutions they work surprisingly 

well. 

While VLE studies at very low, though finite, mole fractions (e.g. for C6H6 

dissolved in water112 x2 Q '3, 10W4) provide quantitative information on the 

Gibbs energy of interaction of pU,&5 of molecules, calorimetric measurements of 

enthalpies of dilution AdilH may be used to determine pairwise enthalpies of 

interaction121. Specifically 

*d&/n = hAhi - mf> + hJrn; - q) + . . . , 
(85) 

where n is the total amount of solute initially at molality mi and then diluted 

with water to give a final solution with molality mf. The coefficient h2 contains 

the desired information, that is to say for a single solute A 

h, = hAA > (86) 

and for a mixture of solutes A and B the relation is 

(87) 

Here, GA= n,/(n 
A 

+ nB) is the mole fraction of A in the solute mixture, and 

m=m +m 
A B 

is the total molality. Further analysis of the pairwise (molecular) 
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interaction enthalpies hAB between two solute molecules A and B may be based on 

group contribution methods, for instance that of Savage and Wood 122 

• ~. ~A,~ ~ ,~  h/i~ (88 

Here, nA, i and nB, i . are the number of type i groups on A and of type j groups on 

B, and H. is the group interaction enthalpy. 
~3 

Albeit somewhat outside the scope of this article, two other areas of intensi 

research activities should be mentioned. The first concerns solutions of 
. . 123-126 

surfactants, micelles and microemuls~ons . Microemulsions 14- have become 
) 

increasingly important in the medical sciences as well as in chemical engineerin 

in particular since solubilization of oil by microemulsions appears to be a 

promising method in tertiary oil recovery processes. Calorimetrically determined 

partial molar heat capacities have recently been used for the characterization c 

model microemulsions 127 such as [water + sodium dodecyl sulfate(SDS) + n-butanol 

+ toluene]. Enthalpy and heat capacity changes associated with micelle formation 

of SDS in water are reported in ref. 128. 

The second topic concerns measurements of accurate thermodynamic quantities 

for aqueous salt solutions at elevated temperatures and pressures, including the 

critical region. Despite the formidable experimental problems, Wood and colla- 

borators have succeeded in constructing a flow calorimeter for the rapid deter- 

mination of enthalpies of dilution 129 up to 473 K. From the same laboratory come 

a differential flow heat-capacity calorimeter for operation at temperatures up t 

600 K and pressures up to 20 MPa, which has been used to measure the heat capac± 

of aqueous sodium chloride 130 from 0.1 to 3.0 mol/kg. At low molalities and high 

temperatures, the apparent molar heat capacity of the salt is enormously negatiu 

-2138 J/K.mol at 0.1 mol/kg, 600 K and 17.7 MPa, These results were discussed in 

terms of the Born equation for the electrostatic contribution to the Gibbs 

energy of hydration of salt composed of hard-sphere ions in a continuous dielect 

medium 

/kG ee = - ( N A e V ~ , o ) ( r ;  4 + P _ - 4 ) ( 4  - a J )  , (8~ 

where e is the elementary charge, e 0 

relative permittivity, and r+ and r 

is the permittivity of vacuum, er is the 

are ~he radii of the cation and anion, 

14) 
Microemulsions are optically transparent multicomponent systems which contai 

water, surfactant, cosurfactant (often an aliphatic alcohol), a hydrocarbon 

often, salts. 
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Taking appropriate derivatives, the electrostatic contributions to 

the solution enthalpy and solution heat capacity may be obtained from eq. 89. 

A modification to include the compressibility of the solvent is introduced in 

ref. 131, while a corresponding-states theory for the heat capacities of aqueous 

salt solutions is proposed in ref. 132. This theory correctly predicts the very 

large negU&ve values of the partial molar heat capacity of dilute solutions of 

electrolytes just below the critical point of water and also predicts very large 

but pohtiwe values just above the critical point, see also ref. 133. 

we conclude this review with a brief discussion of solutions of gases in liquids 

at low to moderate pressures. Besides being of fundamental interest for the 

physical chemist (see above, in particular refs. 4, 5, 7, 106-1101, reliable gas 

solubility data are often required in chemical process design, in environmental 

science (pollution control), and in biophysical and medical applications. Areas of 

recent interest are the solubility of hydrogen in hydrocarbon solvents, which is 

of importance in hydrofining of oil and coal 134 ; removal of CO 
2 

and H S from sour 
135 

2 
natural gases by mixed-solvent absorption (gas sweetening) ; solubility of Freons 

in water136; solubility of gases in selected solvents (or solvent mixtures) and 

137 
anesthetic potency ; solubility of oxygen in perfluorocarbons 

138 , which 

substances may be used as blood substitutes and as carriers in liquid breathing 139 . 

The thermodynamic analysis 
114,115,140 1s based on the rigorous criterion for 

vapor-liquid phase equilibrium in PVT-systems of uniform temperature and pressure, 

eq. 67. For the "gaseous" component 2 (not necessarily a supercritical fluid) 

dissolved in solvent 1, the standard-state fugacity is usually taken to be the 

experimentally accessible Henry coefficient H2 l, that is to say 

f;(J,?) = H&P) = $,,h~,)~ 1 ’ (90) I 

The standard-state fugacity for the solvent is the Poynting-corrected 

orthobaric fugacity of pure solvent 1 

(91) 

(92) 
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(9" 

V~ L denotes the partial molar volume of dissolved gas at infinite dilution 141' 

V ~L and sj is the molar volume of pure liquid solvent. For the liquid-phase activi 

coefficients ~L we now have the so-called asymmetric convention 

--"'( 0 (9, 

At the saturation pressure of the solvent, H2,1(T,Ps, I) is rigorously obtained 

through evaluation of the limiting values of £Xp~£n~L~ isothermal ratios 

of fugacity over mole fraction, that is 

L 

High-precision measurements of H2,LCT,Ps, L) over sufficiently large ranges of 

temperature constitute, with very few exceptions 143-148, the only source of 

information on enthalpies of solution of sparingly soluble gases in liquids. 

Specifically 

(9~ 

A H 2 -  H2 - H 

R T  ~ 
_ = + T~z  - L  aT  " ~  ,~T 

(9  ̧  

where H~ L~ is the partial molar enthalpy of gas at infinite dilution in the 

liquid phase, and H~ V is the molar enthalpy of pure gas in the perfect-gas 

reference state. Particularly gratifying is the excellent accord between the 

recent flow-calorimetric results of Gill and Wads6148 for essentially AH~of 
113 

(water + oxygen) at 298.15 K and the value derived by Benson et al. from the 

temperature dependence of the Henry coefficient. 

As concerns the heat capacity change upon solution of a gas in a liquid, tha 

is the difference between the partial molar heat capacity of gas C °OL P,2 at infini 



35 

dilution and the molar heat capacity of pure gas Ci"2 in the perfect-gas reference 
, 

state, 

(97) 

direct calorimetric determinations are completely absent. The few results for 

AC:2 
obtained from the temperature dependence of AHyhave still considerably 

lar&r uncertainties 
146 

than values obtained from high-precision solubility 

measurements. For instance, Fig. 7 shows recent results for AC? 

solutions (water + oxygen) 
113 , (water + carbon monoxide) 

115 
anl';w1Ze:"Y ~~~~~ne)114 

in the temperature range 273.15 K to 333.15 K. The experimental imprecision of the 

corresponding Henry coefficients is of the order of a few hUMdrr&dth 06 U /%'LCEti. 

Important recent measurements of the solubility of the rare gases in liquid water 

and heavy water over very large temperature ranges (up to about 600 K), though 

with experimental imprecisions of the Henry coefficients of ca. l%, have been 

15 I 1 1 I , I 

0 20 40 60 
t- 

FIGURE 7. Temperature dependence of the heat capacity change on solution, 

AC,"2 
/R = (CmL - Co" )/R, for (water + oxygen) 

113 

and'(water +p~~than~;~14. 

, (water + carbon monoxide) 
115 , 

t = T/K -273.15. 
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reported in refs. 149 and 150. For an interesting gas chromatographic techniqu~ 

see ref. 151. 

Following Ben-Naim I06'I07, when discussing hydrophobic interaction (HI) 

between two solute particles we refer to the ~cst part ~ GHI(r) of the Gi~ 

free energy change (that is the part which originates from the presence of the 

solvent) required to bring the solute particles from fixed positions at infinil 

separation to some close distance r (at constant temperature and pressure). ThE 

link with experimentally accessible quantities is established by noting that a* 

indication of the strength of hydrophobic interaction is provided by the 

approximate relation 

(9~ 

where d = 0.1533 nm is the carbon-carbon distance in ethane. 

Z~/= - RTe. L °° ) (99, 

L = v (99} 

is obtained from VLE measurements of methane and ethane in water 114. L ~ is the 

limiting value (c~ ~ 0) of the conventional Ostwald coefficient, and c~ and ( 

denote the amount-of-substance concentration of gas in the liquid and in the 

vapor phase, respectively. We note that 114'140 

= ~ ) (10q g°"(r, 

where Z~ V is the compressibility factor of pure saturated solvent vapor, and 

~o0 is the fugacity coefficient of gas at infinite dilution in the vapor phas~ 

The corresponding changes in entropy ~ sHI(d), enthalpy 6 HHI(d), and heat 

capacity ~C~I(d)- may be obtained I14 by appropriate differentiation of eq. 98. 

It is possible to inquire about the strength of hydrophobic interaction at oth, 

separations, for instance at r = 0 (see refs. 106, 107 and Ii0), which quantit! 

is related to the free energy of solution of a single hard sphere solute. 
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5. CONCLUDING REMARKS 

Calorimetry is one of the oldest and best established experimental disciplines 

of physical chemistry. Although simple in principle, considerable effort and 

ingenuity has gone into designing the instruments of today's precision, accuracy 

and speed. Calorimetry has advanced to the point where exceedingly small changes 

of energy and very small amounts of substance can be investigated, while at the 

same time pressure and temperature ranges of apparatus have been impressively 

increased. Though theoretically highly important, calorimetric measurements in the 

critical region have been deliberately excluded from this article. Let it suffice 

to say that the difficulties of measuring thermodynamic quantities in the critical 

region (e.g. proper allowance for gravitational effects has to be made) make it 

hard to arrive at precise values of the critical exponents characterizing, for 

instance, the infinities in C 
V 

: 

&,(V=v,,T) -IT-T,l-"( foe T-T, . (101) 

u2I 
that is to say for a pathway along the critical isochore for T < Tc, appears 

to have the same value (x 0.1) as the critical exponent 0.1 for a pathway along 

the critical isochore for T > Tc. For recent discussions of critical exponents 

see refs. 8, 16, 152 and 153. 

In this review we have endeavored to cover the main areas of current calorimetric 

research. New fields of potential interest to physics, chemistry, chemical 

engineering, biophysics and medicine have been indicated by showing the close 

relations with recent advances in molecular thermodynamics. Evidently, precision 

calorimetry continuous to be a versatile and powerful tool for enhancing our 

understanding of fluids. 
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